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ABSTRACT

The aim of this thesis is to solve numerically the coupled nonlinear Schrédinger
equations (CNLSE) in one, two, and three dimensions. A new Alternating Direction Implicit
(ADI) method, Linearized Alternating Direction Implicit (LADI) method, and time splitting
method will be derived to do this job. The comparison between all these methods will be
shown.

In chapter 1: We write the general forms of the coupled nonlinear Schrédinger equations
in one, two, and three dimensions, then we start to present in detail how to solve a block
tridiagonal system by Crout's method. Also, we present Newton's method and fixed point
method as two ways for solving nonlinear systems we obtained.

In chapter 2: We study the coupled nonlinear Schrodinger equations in one dimension
(1+1) using finite difference method and time splitting method. Each one of these methods
will be done using Crank-Nicolson idea, which is second order in space and time, and
Douglas idea, which is fourth order in space and second order in time. All of these schemes
are unconditionally stable. Some examples will be given to show that all these methods are
conserved the mass, momentum, and energy. The accuracy of all these methods are shown
by comparison with the exact solution.

In chapter 3: We study the coupled nonlinear Schrédinger equations in two dimensions
(2+1) using ADI method, linearized ADI method, and time splitting method. Each one of
these methods will be done using Crank-Nicolson idea, which is second order in space and
time, and Douglas idea, which is fourth order in space and second order in time. All of these
schemes are unconditionally stable. Some examples will be given to show that all of these
methods are conserved. The accuracy of all these methods are shown by comparison with
the exact solution.

In chapter 4: We study the coupled nonlinear Schrédinger equations in three

dimensions (3+1) using second order ADI method, and second order time splitting methods.
All of these schemes are unconditionally stable. Some examples will be given to show that
these methods are conserved. The accuracy of the ADI method will be shown by comparison
with the exact solution.

In chapter 5: We illustrate the numerical solution obtained by using the derived methods
for solving the coupled nonlinear Schrodinger equations in multiple dimensions and we
compare between all these methods through presenting some tables.



